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1 Introduction and Background

1.1 A Krash Course on K-Theory

K-theory refers to the study of functors Ki which associate to a ring Λ a sequence of abelian
groups KiΛ. The definition of the higher K-groups, Ki for i ≥ 2, eluded mathematicians
until the 1970s. Until then, the only K-groups one could hope to study were K0, K1, and K2,
the last of which did not have a universally accepted definition at the time. These groups
are related to each other by an exact sequence:

K2a→ K2(Λ)→ K2(Λ/a)→ K1a→ K1(Λ)→ K1(Λ/a)→ K0a→ K0(Λ)→ K0(Λ/a)

where a is an ideal in Λ. It is not clear that we have a well-formed definition of Kia, and in
fact, it turns out that for i > 0, Kia depends on the ambient ring. In this section, we will
define only K0 and K1, as these are the only groups needed to motivate the subject of the
paper. Milnor defines these in [1]:
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Definition 1.1. Consider the category of finitely generated projective modules over a ring Λ.
The projective module group K0Λ is the abelian group generated by isomorphism classes [P ]
of finitely generated projective modules over Λ subject to the relation that [P ]+[Q] = [P⊕Q].

Definition 1.2. Let GL(Λ) denote the direct limit of the sequence GL1(Λ) ⊂ GL2(Λ) ⊂
GL3(Λ) ⊂ ... . A matrix in GL(Λ) is elementary if it exactly resembles the identity matrix
except for one off-diagonal entry. The group generated by elementary matrices is a normal
subgroup of GL(Λ) which we denote E(Λ). We define the Whitehead group K1Λ as the
quotient group GL(Λ)/E(Λ).

Remark 1.3. In practice, the groups K0Λ and K1Λ are difficult to compute. However, one
might notice that the exact sequence above resembles the exact sequence used to relate the
homology groups of a space, a subspace, and its corresponding quotient space. This instills
hope that we can use some tools from classical algebraic topology to aid the study of K-groups.

1.2 Excision and the Mayer-Vietoris Sequence

Recall that the excision theorem describes when we can remove a subspace Z ⊂ A so that
the relative homology groups Hn(X,A) and Hn(X \Z,A\Z) are isomorphic. In [2], Hatcher
describes Excision and the Mayer-Vietoris exact sequence:

Theorem 1.4 (Excision). Given subspaces Z ⊂ A ⊂ X such that the closure of Z is
contained in the interior of A, the inclusion (X \Z,A \Z) ↪→ (X,A) induces isomorphisms
Hn(X \ Z,A \ Z)→ Hn(X,A) for all n.

The proof of the excision theorem is lengthy and beyond the scope of the paper. In general,
we would like to be able to compute the homology of a space by breaking it up into simpler
pieces. Excision allows us to do exactly that:

Corollary 1.5. For subspaces A,B ⊂ X whose interiors cover X, the inclusion (B,A∩B) ↪→
(X,A) induces isomorphisms Hn(B,A ∩B)→ Hn(X,A)

Proof. Set B = X \ Z and Z = X \ B so that A ∩ B = A \ Z. Then, since X \ int(B) is
the closure of Z, the condition that the closure of Z be in the interior of A is equivalent to
requiring that X = int(A) ∪ int(B).

Remark 1.6. This equivalent characterization of excision gives rise to the Mayer-Vietoris
sequence, an incredibly powerful computational tool that gives us information about the ho-
mology of a space X in terms of the homology of A, B, and A ∩ B. In the next section, we
will see that its K-theoretic analog, Milnor excision, is similarly useful.

Definition 1.7 (Mayer-Vietoris sequence). Given subspaces A,B ⊂ X as above, the
corresponding Mayer-Vietoris sequence is the long exact sequence:

...→ Hn(A ∩B)→ Hn(A)⊕Hn(B)→ Hn(X)
∂−→ Hn−1(A ∩B)→ ...→ H0(X)→ 0
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1.3 The f-adic Completion of a Ring

In the following section, we will state the excision theorem for rings and schemes. For the
rest of this section, we will give the background necessary to understand the analogous
statement for the gluing of rings and sheaves: the Beauville–Laszlo theorem. [3] gives the
following definitions:

Definition 1.8. Let A be a commutative ring and let a be a finitely generated ideal of A.
The filtration (anA)n defines a topology on A called the a-adic topology. This is the topology
with a basis of open sets {a+ anA : a ∈ A, n ∈ Z>0}.

Definition 1.9. The a-adic completion of A is Âa := lim←−A/anA. When the ideal in question

is unambiguous, we will simply write Â.

One checks that the inverse limit exists and retains a ring structure.

Remark 1.10. We are primarily interested in the case where a = (f) for some f ∈ A, and
we will usually write f -adic rather than (f)-adic for brevity. It may not be immediately clear
that Â is actually complete with respect to the a-adic topology. Fortunately, this is the case.

Proposition 1.11 ([4]). Â is complete with respect to the a-adic topology. In particular, the
map i : A→ Â is an isomorphism if and only if A is complete in this topology.

Proof. Define a filtration (Ân)n on Â by Ân := {(am)m ∈ Â : am = 0 for all m ≤ n}. Let
{ak}k be a Cauchy sequence in Â. For all n > 0 there exists kn so that for all k ≥ kn,
ak−akn ∈ an. We can write ak = (ak,1, ak,2, ...) and we see that this implies akn,i = ak,i when

i ≤ n and k ≥ kn. Then the limit of {ak}k is â = (ak1,1, ak2,2, ...) ∈ Â.

Suppose i is an isomorphism and let {ai}i be a Cauchy sequence that converges to â ∈ Â.
Then â has a preimage in A that the preimage of {ai}i must converge to. Since all sequences
in A have an image in Â, this implies A is complete.

Conversely, suppose A is complete and let {ai}i be a Cauchy sequence in Â which con-
verges to â ∈ Â. Then for all n > 0, an+1 − an ∈ an so the sequence is Cauchy in A. Since
A is complete, there is some a ∈ A this sequence converges to that must map to â. Now, if
{ai}i is a Cauchy sequence in Â which converges to 0 ∈ Â. Then its preimage must converge
to 0 in A, so the kernel of i is trivial.

Remark 1.12. These definitions work equally well if we replace A with an A-module M . If
M is finitely generated and A is noetherian then M̂ is also complete in the a-adic topology.

1.4 The Tor Functors

In a later section, we will use the Tor functors to prove the Beauville-Laszlo theorem. We
briefly recall their definitions, given in [5], here. Given a commutative ring A, we have a
bifunctor (−)⊗A (−) : A-Mod× A-Mod→ Ab. The functors TorAi are the derived functors
of ⊗A.
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Definition 1.13. Consider an A-module N . Given a projective resolution P of another
A-module M :

...→ P2 → P1 → P0 →M → 0

define P ⊗N to be

...→ P2 ⊗N → P1 ⊗N → P0 ⊗N →M ⊗N → 0

Definition 1.14. Given A-modules M and N , we define TorAi (M,N) := Hi(P ⊗N). This
defines bifunctors TorAi (−,−) : A-Mod× A-Mod→ Ab. When the underlying ring is clear,
we will write only Tori.

Remark 1.15. TorAi (M,N) is independent of the choice of projective resolution P and
is thus well-defined. Given two projective resolutions P and Q of M , one can prove this
by constructing a map of chain complexes P → Q and showing it is unique up to chain
homotopy. This yields an isomorphism of homology groups Hi(Q⊗N) ∼= Hi(P ⊗N).

2 Milnor Excision

Most claims and arguments made in this section are Milnor’s, presented in [1].

2.1 Examples: K0Λ of Local Rings and Dedekind Domains

Remark 2.1. In the general case, K0Λ is difficult to compute. However, in certain special
cases, such as when Λ is a local ring or a Dedekind domain, K0Λ is better understood.
We will begin with these examples. This phenomenon closely resembles the motivation for
excision in classical algebraic topology, so it is reasonable to want to seek out similar exact
sequences in K-theory.

Theorem 2.2. All finitely generated projective modules over a local ring Λ are free

Proof. Let P be such a module and Q such that P ⊕Q ∼= Λr. Let m be the maximal ideal
of Λ and consider P/mP and Q/mQ. These are finite dimensional vector spaces over the
field Λ/mΛ, so they have bases. Choose a representative for each basis element. Recall that
a matrix with entries in a local ring Λ is non-singular if and only if its image in Λ/mΛ is as
well. This implies that these representatives form a basis of P ⊕ Q. This now implies that
the representatives from P/mP are a basis of P .

Corollary 2.3. If Λ is a local ring, K0Λ is the free group on one generator.

Definition 2.4. Two non-zero ideals a and b of a Dedekind domain Λ are said to be in the
same ideal class if there exist x, y ∈ Λ so that xa = yb. The ideal class group C(Λ) of Λ is
the abelian group of ideal classes under multiplication (whose identity is the class of principal
ideals). We denote the ideal class of a by {a}.

Theorem 2.5. If Λ is a Dedekind domain, K0Λ ∼= Z ⊕ C(Λ) and this isomorphism is
canonical. Moreover, this is equipped with a product structure defined by the fact that the
product of two elements in C(Λ) is 0.
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Before proving 2.5, we recall some basic facts about Dedekind domains and their ideals:

Lemma 2.6.

1. Every ideal in a Dedekind domain Λ is finitely generated and projective and every
finitely generated projective module over Λ is isomorphic to a finite direct sum of ideals.

2. Two direct sums of nonzero ideals a1 ⊕ ... ⊕ ak and b1 ⊕ ... ⊕ bs are isomorphic as
Λ-modules if and only if r = s and {a1...ak} = {b1...bs}.

3. If a and b are nonzero ideals in Λ, a⊕ b is isomorphic to Λ1 ⊕ (ab)

Proof of 2.5. It is not difficult to check that the map [a1 ⊕ ... ⊕ ak] → (r, {a1...ak}) is an
isomorphism of groups. Now, let k be a field and consider a morphism Λ → k. Note
that such a morphism always exists when Λ is commutative. This induces a morphism
K0Λ → K0k ∼= Z whose kernel we denote K̃0Λ. Note K̃0Λ is isomorphic to C(Λ) since all
modules over k are free (which again illustrates the isomorphism of the underlying groups).

To show the product structure, notice that by 2.6.1 and 2.6.2, we can describe K̃0Λ as
the set of differences of projective Λ-modules [P ] − [Q] where rank(P ) = rank(Q). Let us
take a brief detour to define the rank of a projective module over a Dedekind domain:

The rank of a projective module P at a prime ideal p is defined as the rank of the free
module Pp. An application of theorem 2.2 shows that this is free since Λp is a local ring.
One can show that when Λ is a domain, this is independent of the choice of p, so rank(P )
is well defined.

In particular, we can write each element of K̃0Λ as [a]− [Λ1]. It now suffices to show that
([a]− [Λ1])([b]− [Λ1]) = 0. But this follows immediately from 2.5.3.

2.2 Building Finitely Generated Projective Modules

In the case of topological spaces, the excision theorem allowed us to study the homology of
a space by covering it with simpler spaces and studying the homology of those spaces. In
this section, we will show that one can study the category of finitely generated projective
modules over a ring Λ, denoted Proj(Λ), by studying finitely generated projective modules
over Λ1 and Λ2 whose groups of projective modules may be simpler. We will do this by
showing that when the map j2 : Λ2 → Λ is surjective, the pullback square of rings:

Λ Λ1

Λ2 Λ′
j2

i1

j1i2

⌟

induces a pullback square of categories:

Proj(Λ) Proj(Λ1)

Proj(Λ2) Proj(Λ′)

⌟
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Recall that given a Λ-module P and a ring homomorphism f : Λ→ Λ′, we have an induced
Λ′ module, Λ′ ⊗Λ P which we denote f#P . This gives rise to a Λ-linear map f∗ : P → f#P .
Consider finitely generated projective modules P1 and P2 over Λ1 and Λ2, respectively.

Theorem 2.7 (Milnor Excision). Suppose we have an isomorphism of Λ′-modules h :
j1#P1 → j2#P2. Let M = M(P1, P2, h) be the fiber product of P1 and P2 over j2#P2. Recall
that this can be viewed as the set of pairs (p1, p2) ∈ P1×P2 where hj1∗(p1) = j2∗(p2). Define
a Λ-module structure on M by λ · (p1, p2) := (i1(λ)p1, i2(λ)p2) where λ ∈ Λ and (p1, p2) ∈M .
Then:

1. M is finitely generated and projective over Λ.

2. Every finitely generated projective Λ-module is isomorphic to M(Λ1,Λ2, h) for
suitably chosen Λ1, Λ2, and h.

3. P1
∼= i1#M and P2

∼= i2#M .

To prove the above, we first consider the special case where P1 and P2 are free modules.
Choose bases {xα}α and {yβ}β for P1 and P2. These determine bases {j1∗xα}α of j1#P1 and
{j2∗yβ}β of j2#P2 so that the isomorphism h can be expressed with respect to these bases as
an invertible matrix A = (aα,β) over Λ

′.

Lemma 2.8. Suppose that P1 and P2 are free modules and that A is the image under j2 of
an invertible matrix C = (cα,β) over Λ2 (so that aα,β = j2cα,β). Then M is free and finitely
generated.

Proof. Fix a new basis of P2 {y′α} by

y′α =
∑
β

cα,βyβ

We then have that
h(j1∗xα) =

∑
β

aα,βj2∗yβ

which we see is exactly the image of {y′α} under j2∗. Having now shown that h(j1∗xα) = j2∗y
′
α,

we have shown that (xα, y
′
α) is an element of M(P1, P2, h) for each α. The set {(xα, y

′
α)}α is

therefore a finite basis of M over Λ, so M is free and finitely generated.

Lemma 2.9. Suppose that P1 and P2 are finitely generated free modules and that j2 is
surjective. Then M is finitely generated and projective.

Proof. Let Q1 be a free Λ1-module such that rankΛ1(Q1) = rankΛ2(P2). Similarly, let Q2

be a free Λ2-module such that rankΛ2(Q2) = rankΛ1(P1). The isomorphism h gives rise
to an isomorphism g : j1#Q1 → j2#Q2 with matrix A−1. Using the definition of M , one
checks that M(P1, p2, h)⊕M(Q1, Q2, g) ∼= M(P1⊕Q1, P2⊕Q2, h⊕ g). The matrix A⊕A−1

represents the map h⊕ g. We can decompose this matrix as(
A 0
0 A−1

)
=

(
I A
0 I

)(
I 0
−A−1 I

)(
I A
0 I

)(
0 −I
I 0

)
6



where each I is the identity matrix of appropriate size. Since j2 is surjective, each matrix on
the right-hand side is the image of a matrix over Λ2. The preimage of the left-most matrix
on the right-hand side must be of the form(

I ∗
0 I

)
which is necessarily invertible. One can show similarly that the other three matrices on the
right-hand side are also invertible. Thus, A⊕A−1 is the image under j2 of an invertible matrix.
By lemma 2.8, this implies that M(P1⊕Q1, P2⊕Q2, h⊕g) ∼= M(P1, P2, h)⊕M(Q1, Q2, g) is
a finitely generated free module. This immediately implies M(P1, P2, h) is finitely generated
and projective.

Lemma 2.10. Suppose P1 and P2 are projective, then there exist finitely generated modules
Q1 and Q2 so that P1 ⊕Q1 and P2 ⊕Q2 are free and j1#Q1

∼= j2#Q2.

Proof. Pick N1 and N2 so that P1 ⊕ N1
∼= (Λ1)

r and P2 ⊕ N2
∼= (Λ1)

s for some r, s > 0.
Then j1#P1 ⊕ j1#N1

∼= (Λ′)r and j2#P2 ⊕ j2#N2
∼= (Λ′)s. Recall that j1#P1

∼= j2#P2 and let
P ′ = j1#P1. Then we have that

j1#N1 ⊕ (Λ′)s ∼= j1#N1 ⊕ P ′ ⊕ j2#N2
∼= (Λ′)r ⊕ j2#N2

Now we may define Q1 = N1 ⊕ (Λ′)s and Q2 = N2 ⊕ (Λ′)r and note that these satisfy the
desired conditions.

The proof of 2.7 falls out of the preceding lemmas:

Proof of theorem 2.7.1. Choose Q1 and Q2 as in lemma 2.10 and fix an isomorphism
k : j1#Q1 → j2#Q2. By lemma 2.9 M(P1, P2, h) ⊕M(Q1, Q2, k) is finitely generated and
projective, which implies M(P1, P2, h) is also finitely generated and projective.

Proof of theorem 2.7.2. Let P be a finitely generated projective Λ-module and set P1 = i1#P
and P2 = i2#P . Recall from the diagram above that j1i1 = j2i2 so we have an isomorphism
h : j1#P1

∼= j2#P2 and a corresponding commutative diagram:

P P1

P2 j2#P2j2∗

i1∗

hj1∗i2∗

so that P = M(P1, P2, h)

Proof of theorem 2.6.3. We have a natural Λ-linear map M → P1 which induces a map
f : i1#M → P1. If as in lemma 2.9, M and P1 are free, i1#M and P1 are free of the same
rank, so they are isomorphic.

Now, recall that as in the proof of lemma 2.9, M(P1, P2, h) is a direct summand of a
free module M(P1 ⊕Q1, P2 ⊕Q2, h⊕ h). We have a natural map M(Q1, Q2, h)→ Q1 which
induces a map f as above whose image lies in Q1. Then f ⊕ f is an isomorphism which in
particular implies that f is as well.
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Remark 2.11. Having shown that the diagram of categories above is indeed a pullback
diagram tells us we can apply the excision theorem to affine schemes. Applying the Spec
functor to the pullback square of rings immediately gives a pullback square in the category
of schemes. This extends globally without much difficulty (in the case of separated schemes)
since we can take an affine open cover and use the fact that finite intersections of affine sets
are affine to ensure compatibility.

2.3 Exact Sequences in K-theory

Definition 2.12. Suppose we have a pullback square satisfying the assumptions used in
section 2.2. The (algebra K-theoretic) Mayer-Vietoris sequence of a ring Λ is the exact
sequence

K1Λ→ K1Λ1 ⊕K1Λ2 → K1Λ
′ → K0Λ→ K0Λ1 ⊕K0Λ2 → K0Λ

′

Its name is due to the resemblance of the Mayer-Vietoris sequence in classical algebraic
topology. We define the homomorphisms KiΛ → KiΛ1 ⊕KiΛ2 → KiΛ

′ by x 7→ (i1∗x, i2∗x)
and (y, z) 7→ j1∗y− j2∗z. We define the map ∂ : K1Λ

′ → K0Λ as follows: represent x ∈ K1Λ
′

by a matrix in GLn(Λ
′). This determines an isomorphism of free Λ′-modules h : j1#Λ

n
1 →

j2#Λ
n
2 . We then set M = M(Λn

1 ,Λ
n
2 , h) and define ∂(x) = [M ] − [Λ1]. One checks briefly

that this is well-defined and that it follows from Milnor excision that the sequence is indeed
exact.

Definition 2.13. Let a be a (2-sided) ideal in Λ. Let D = D(Λ, a) denote the subring of
Λ × Λ composed of elements (λ, λ′) such that λ = λ′ mod a. Let p1, p2 : D → Λ be the
projection maps. We define Kia := ker(p1∗) where p1∗ is the induced map KiD → KiΛ.

Theorem 2.14. The sequence

K1a→ K1Λ→ K1Λ/a→ K0a→ K0Λ→ K0Λ/a

is exact.

Proof. The commutative diagram
D Λ

Λ Λ/a

⌟

satisfies the hypothesis of Milnor excision and thus defines an exact sequence

K1D → K1Λ⊕K1Λ→ K1Λ/a→ K0D → K0Λ⊕K0Λ→ K0Λ/a

from which we extract the maps p2∗|ker(p1∗) : Kia→ KiΛ and π∗ : KiΛ→ KiΛ/a where π is
the projection Λ→ Λ/a. The sequence is exact by construction.
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3 Beauville–Laszlo Formal Gluing

3.1 The Beauville–Laszlo Theorem

In the previous section, we gave a scheme-theoretic analog of the excision theorem. In this
section, we would like to give a similar analog of formal gluing. Consider a ring A and let
f ∈ A such that f is not a zero divisor. Let Af = A[f−1] and let Â be the completion of A
in the f -adic topology. We will show that the diagram:

Mf (A) Af -Mod

Mf (Â) Âf -Mod

where Mf (A) denotes the category of f -regular A-modules (modules where f is not a zero di-
visor), is a pullback square of categories. Most claims and arguments made in this subsection
are presented in either one or both of [6] and [7].

Remark 3.1. In the case that A is noetherian, the maps A→ Â and A→ Af are flat and

one can apply Grothendieck’s faithfully flat descent theory. The fact that the map A → Â
need not be flat when A is not noetherian motivates the main result of this section.

Theorem 3.2 (Beauville–Laszlo). Let F be an Af -module and G an f -regular Â-module.

Suppose there exists an isomorphism of Âf -modules φ : Â⊗A F → Gf . Then there exists an

f -regular A-module M equipped with isomorphisms α : Mf → F and β : M ⊗A Â→ G. This
is a functorial bijection (F,G, φ)←→ (M,α, β). Moreover, if F and G are finitely generated
(resp. flat, resp. projective and finitely generated) then M is as well.

Remark 3.3. Given (M,α, β), we easily recover (F,G, φ) by F = Mf , G = Â ⊗A M , and

φ : Â ⊗A Mf → (Â ⊗A M)f is the usual isomorphism. Therefore, we are most concerned
with the identification (F,G, φ)→ (M,α, β).

Lemma 3.4. Suppose such an M exists as claimed. The sequence

0→M → F → Gf/G→ 0

is short exact.

Proof. Let us first compute Tor1(Af/A,M). Observe that Af/A ∼= lim−→A/fnA, so it suffices
to compute Tor1(A/f

nA,M). Since f is not a zero divisor and M is f -regular, the multipli-
cation map ·fn is injective on A⊗M . Using the resulting long exact sequence after tensoring
with M , we see that Tor1(A/f

nA,M) = 0 for all n and therefore that Tor1(Af/A,M) = 0.
This implies that the short exact sequence

0→ A→ Af → Af/A→ 0

remains exact after tensoring with M . One checks that Af/A is f -adically complete as an A-

module, so a brief computation and application of proposition 1.11 imply that Af/A ∼= Âf/Â
so that

0→M →Mf → (Âf ⊗A M)/(Â⊗A M)→ 0
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is exact. We then have an isomorphism of short exact sequences:

0 M Mf
(Âf⊗AM)

(Â⊗AM)
0

0 M F Gf/G 0

βαid

Corollary 3.5. If (M,α, β) exists, it is unique up to isomorphism.

Proof. Any other triple must also yield an isomorphism with the short exact sequence

0→M → F → Gf/G→ 0

as in the above proof. This immediately implies such a triple is isomorphic to (M,α, β).

Lemma 3.6. Let φ : F → Gf/G be the composition of φ and the projection π : Gf → Gf/G.
Then φ is surjective.

Proof. Set B = Af × Â and notice that ρ : A → B is faithful, so it suffices to check
subjectivity after tensoring with B. We have that

Af ⊗A (Gf/G) ∼= (Af ⊗A Gf )/(Af ⊗A G) ∼= Gf/Gf
∼= 0

so we have reduced to tensoring with Â. Then 1Â⊗φ : Â⊗A F → Gf/G is the composition
π ◦ φ where π : Gf → Gf/G is the usual surjection. The claim follows because φ is an
isomorphism, so its composition with π remains surjective.

Proposition 3.7. Given a triple (F,G, φ), there exists (M,α, β) as described above. Addi-
tionally, if F and G are finitely generated (resp. flat, resp. projective and finitely generated),
so is M .

Proof. Set M = ker(φ) and observe that this gives an exact sequence

0→M
i−→ F

φ−→ Gf/G→ 0

where i : M → F is an inclusion. Let α be the induced map if : Mf → F . Recall that
Af⊗A (Gf/G) = 0, so tensoring the exact sequence with Af shows that if is an isomorphism.

To show the existence of β, we first show that TorA1 (Â, Gf/G) = 0. Since Gf/G =

lim−→G/fnG, it suffices to show TorA1 (Â, G/fnG) = 0 for any n. Using the short exact sequence

0→ A
fn

−→ A→ A/fnA→ 0

we see that TorA1 (Â, A/f
nA) = 0. A nontrivial computation verifies that we have a surjection

TorA1 (Â, (A/f
nA)I) → TorA1 (Â, Gf/G) and that the former is 0. Having shown this, we get

that the following sequence is short exact:

0→ Â⊗A M
1⊗i−−→ Â⊗A F

π◦φ−−→ Gf/G→ 0

Then we may pick β to be the composition φ◦(1⊗i) : Â⊗AM → G which is an isomorphism
by the above exact sequence. Using the fact that the map ρ : A→ B is faithful, the property
of being finitely generated (resp. flat, resp. projective and finitely generated) is preserved.
This completes the proof of 3.2.
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3.2 An Example: Vector Bundles

Remark 3.8. Geometrically, the Beauville-Laszlo theorem states that under certain condi-
tions, we can glue sheaves on an affine scheme over a formal neighborhood of a point. As
such, we can build vector bundles on X = Spec(A) from a bundle on U = Spec(Af ) and a

bundle on a formal neighborhood Spec(Â) of X \U if they agree on Spec(Âf ). The geometric
intuition is more transparent when we restrict the theorem to projective modules (recall the
bijection preserves this property). The original motivation for this theorem was an example
of gluing vector bundles which follows as a corollary of the theorem:

Corollary 3.9 ([6]). Let k be a field, A be a k-algebra. and X be a smooth, connected,
algebraic curve over k with p a closed k-rational point on X equipped with a choice of local
coordinate z. Let F and G be vector bundles over X∗ = (X − p) and the disk X̂ = Spec(Â)
respectively which agree on a formal neighborhood X̂∗. Let XR = X ×k Spec(R) and DR =
Spec(R[[z]]). There is a functorial bijection between isomorphism classes of rank r vector
bundles E on XR with trivializations τ and σ over X∗

R and DR respectively and the group
GLr(R((z))).

Proof. Let us start with the same setup as in the proof of the Beauville-Laszlo theorem.
Restricting to the case where F and G are free modules of rank r, the theorem implies that
isomorphism classes of triples (M,α, β) are in bijection with GLr(Âf ) where α and β are

trivializations Ar
f → Mf and Âr → Â ⊗A M respectively. This extends globally by taking

an affine cover and applying the theorem to the intersections of each element of the cover.
Recall we set B = A/fA and note it is a formally smooth k-algebra. This gives a

morphism B → Â/fÂ. By formal smoothness, this extends to a k-algebra morphism B → Â
which gives a map B[[z]]→ Â where B[[z]] is the formal power series ring. Note that this is
non-canonical. We see that this is an isomorphism on the associated graded, so we have that
B[[z]] ∼= Â and that B((z)) ∼= Âf . Applying the conclusion from the previous paragraph to
the setup in the statement of the corollary now completes the proof.

Remark 3.10 ([8]). An interesting fact about this example is that it enables an alternate
construction of the affine Grassmanian GrG of a semisimple algebraic group G over k in
terms of G-bundles on a smooth, projective curve X. The crucial step made possible by this
theorem is that one can glue vector bundles on a curve X by gluing the trivial bundle on
(X − p) and the trivial bundle on a formal neighborhood Spec(k[[z]]) of p to construct a
vector bundle on X. It turns out that all bundles can be constructed this way, a fact due to
the non-trivial result that G-bundles on (X − p) × S for a scheme S are fpqc-locally trivial
on S.
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